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ABSTRACT 

It is important to make car-drivers improve their way of looking for recognizing key objects or areas precisely. This study 

designs a system following such a motivation that distinguishes several areas in a display with weights of importance.  

A present proposing function for successful area detection offers drivers an opportunity to compare their gaze with experts. 

Concrete method for this implementation includes U-Net that is one of major techniques of machine learning combined 

with grid segmentation.  
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1. INTRODUCTION 

It is important for car-drivers to keep both safety way of driving and mature their cognitive ability. More than 

40,000 people die and more than one million are injured in traffic accidents each year in European Union 

member countries. Road fatalities account for only a small number of deaths but are the leading cause of death 

in developed countries for people under the age of 40 (Plainis et al., 2006). Most automobile accidents are 

caused by drivers' violation of their duty of safety. In road traffic accidents, 57% are directly caused by human 

factors and 90% revolved human factors (Green & Senders, 1999). Among other things, findings from the  

100-car naturalistic study showed that almost 80% of traffic accidents could be attributed to inattention (Klauer 

et al., 2006). In fact, it has been argued that young drivers have higher accident rates because of their immature 

cognitive abilities (Deery, 1999). These facts indicate that drivers may lack the ability to recognize danger 

objects, routes, places or areas and the awareness of danger avoidance. Thus, it is necessary to approach the 

internal processing of humans such as cognition and judgment, in order to reduce the number of accidents 

caused by these factors.  

However, it is difficult for learners to judge whether they appropriately recognize and understand the 

conditions of traffic compared with internal vital state and sensed result of the environment. Even though a 

driver sees something, sometimes s/he might not consciously recognize it. Therefore, the function that enables 

a system to determine whether a learner as a driver is aware of the place to be focused and to make an objective 

judgment to identify a better way for her/his recognition. 

Driving a car or a motorbike is available to apply the traditional knowledge in motor skill learning, in which 

the following processes can be transferred: recognition of external and environmental aspects, correct judgment 

based on proper recognition (selection of driving behavior), and implement the actual behavior based on prior 

judgment (operation of a car or a motorcycle). The result of the action is recognized again both externally and 

intrinsically and reflected succeeding actions during driving. 

In the present study, the project is conducted using a driving simulator (DS) with Virtual Reality (VR), 

rather than learning on the premise of actual car driving. The DS used can change the course with deliberate 

events according to the driving scenario applied. Our study presents the images of accidents and the driving 

conditions leading up to them play an important role as human visual input (Yamada et al. 2022). 



This study designs an environment to support driving skill improvement using both machine learning and 

eye tracking technologies. It is assumed that tracked data of eye movements presents high quality of appropriate 

eye tracking measures. Then, the study analyzes the data using machine learning technique for classifying areas 

of same semantics and provides a learning support information following the context. However, for the sake 

of simplicity, the present study starts using only gaze information related to the perception of the outside world, 

without direct manipulation of the driving object such as accelerating, braking, or steering wheel operation. 

For example, it is possible to capture how the viewpoint differs from that of skilled drivers and how the 

viewpoint changes when behavioral change is observed. 

2. ANALYSIS BY SCREEN AREA SEGMENTATION 

2.1 Analysis of Gaze Coordinates 

There are a lot of tools that treat time-series data of eye movements based on (x, y) screen-coordinates. Eye 

tracking is often performed with either fixed camera or a specific devise of wearing glass during driving. Our 

environment adopts a DS, in which we can select a fixed camera in front of the screen because the scenery of 

the outside world can be reflected on it. Actual analysis method for such time-series data evaluates the 

similarity between two different series, for example, with DTW (Dynamic Time Warping) (e.g. Stana and 

Philip 2007, Naito et al. 2020) which is available to apply under certain conditions. The advantage of applying 

DTW is that the analyst only needs to focus on the series data, regardless of object-meanings such as a walker 

and a car displayed in the background. However, the general viewing angle (e.g., 40 degrees for both left and 

right side respectively) may not be sufficiently considered from physiological perspective. 

In an actual situation for tracking, however, it is necessary to take into account that mixed elements may 

influence errors with visual processing by humans as well as the processing conditions of the computer, 

including observation errors. Specifically, humans do not always accurately perceive the smallest unit of (x, y) 

coordinates corresponding to the screen resolution. It may be, if anything, more natural to perceive the target 

area or the object as part of a plane. Therefore, we propose a method to divide the entire screen into partial 

areas.  

2.2 Analysis of Gaze Coordinates in a Predefined Area 

Gaze information is one of the major keys for solving the traffic accidents (Vicente, F. et al. 2015). A lot of 

studies introduce machine learning techniques to this domain from technical perspectives (Yoon, H.S. et al. 

2019). However, they are still focusing on the technical innovation of precise detection of eyes and therefore 

we need the applied approach for learning a way of gaze. When drivers learn the better way of looking at 

several important objects or areas according to the condition of actual road, the driving way including cognition 

and operation is refined. 

In this study, we aim to provide a learning support system that improves the driver's ability to recognize 

hazardous areas by guiding the driver's gaze through comparison with other gaze data which is obtained from 

skilled drivers in advance and regarded as a referential model. In this case, it is necessary to develop a system 

that estimates the degree of hazard discrimination from the gaze data and prompts the driver to pay attention 

to the hazardous area. 

By dividing the entire screen into partial areas of homogeneity based on a latticed pattern, it is possible to 

determine which area the driver is looking at if the driver's gaze coordinates are available for tracking. 

However, it is necessary to determine the scale of the unit area occupied and the location of the area that can 

be considered to correspond to the gaze. Since the DS used in this study introduces VR technology, it is possible 

to calculate the two-dimensional coordinates of the objects drawn on the DS screen based on the relationship 

between the position of the object itself and the camera from which it is drawn. However, our system is different 

from the original DS and the proposed function is independently developed from the DS itself considering its 

future extension to the real view in real driving. 



3. METHODS INTEGRATION AND GAZE EVALUATION 

3.1 U-Net 

Segmentation is the process of dividing an image into subregions with similar features and meanings. In recent 

image processing fields, the regions of the target object and background in an image are often segmented and 

recognized pixel by pixel, and the image cells are classified to simultaneously recognize the region and class 

of the object in the image. In 2012, a method using feature maps obtained by CNN, which is an abbreviation 

of convolutional neural network, was proposed (Farabet, C. et al, 2012.), and since then, deep learning has 

become the mainstream method for image segmentation. 

U-Net has a CNN architecture for image segmentation developed by Oraf et al. (2015). The network 

consists of a contraction path and an expansion path. It is called U-Net because of its U-shaped architecture. 

In the contracting path, features are mapped by convolution. In U-Net, the same hierarchy of contraction and 

expansion paths are connected by a mechanism called skip connection, which ensures that the positional 

relationship of each pixel in the input image is not lost. 

As for our actual implementation of U-Net, an original image is converted into 160 × 160 square size at 

first in terms of a contraction phase. We configured batch size as 4 and 40 epochs. We used Keras and 

Tensorflow for the default library of U-Net and we set Adam as an optimizer. 

This study uses the GTA5 dataset created by Stephan R. et al. (2016). These images are rendered using the 

open-world video game Grand Theft Auto 5, and are all from the perspective of a car on the streets of a virtual 

city. The dataset consists of 2,500 original images of 1,914 × 1,052 pixels and 2,500 segmented images, 30% 

of which are used as test data for comparison and evaluation. Actual number of the test data we used was 750 

and the rest was used for train data. The training was performed with a batch size of 4 and an epoch count of 

40, and predictions were made for each frame of the DS video. 

3.2 Grid Segmentation 

In this study, the model gaze data of a skilled driver and the gaze data of a learner are compared for each frame 

of the DS video using U-Net based area segmentation, and identification ability for danger areas/objects is 

evaluated by the degree of agreement between the areas segmented with both techniques. However, even if the 

gaze coordinate in an area of a skilled driver and that of a learner are the same, they may be looking at locations 

that are quite far apart in terms of coordinates of the same area by U-Net segmentation. In this case, for example, 

a road spans a wide area from the left end to the right end, and unified area segmentation using simple U-Net 

would result in a problem where gaze on the extreme left or right are regarded identically. Therefore, in addition 

to area segmentation by U-Net, the entire image is independently divided into an N × N grid (3 × 3 in this 

experiment) to subdivide the viewing direction. This process suppresses the problematic patterns and enables 

highly accurate evaluation. 

3.3 Gaze Evaluation 

When evaluating gaze using the combination of U-Net and lattice domain segmentation described in the 

previous sections, we focus on the vertical and horizontal distance traveled to the opponent's gaze based on the 

position of a learner's or an expert's gaze and add the evaluation points (EP) as shown in Table 1. where N is 

the number of grid segmentations, and L is the cost of reaching the line of sight from the referential point. For 

example, if the cell in upper left corner of Figure 1 is the reference and the lower right corner is the same area 

in U-Net, the EP sets 0, but for adjacent cells, the EP sets 0.5. 

Table 1. Evaluation weight points at the time of gaze detection 

Grid Segmentation Segmentation by U-Net Evaluation Point 

Match Match 1 

Match Not match 0.75 

Not match Match 1-(L/(N-1)) 

Not match Not match 0 



 

Figure 1. Combined method of area segmentation using U-Net and grid 

3.4 Feedback to Learners 

 

Figure 2. Screen dump; feedback circles on the screen of driving simulator 

In this study, after acquiring the gaze information of the learner, the gaze coordinates of the learner and those 

of the skilled driver acquired beforehand are simultaneously displayed on the screen as a circular area together 

with the DS video of a background layer, as shown in Figure 2, to support learning how to set the viewpoint 

on the screen at each frame. In this process, a gradation of colors is applied to the drawing according to the 

evaluation points in the previous section to make it easier to understand visually which points are different 

each other. The fundamental idea for gaze improvement is that they can identify how and where the instructor 

or the expert looks on in case learners are aware of the model view. They can get such information with two 

circles with independent colors. The color is set based on the previous discussion based on the analysis shown 

in Figure 1. At that time, the gaze coordinate data of the skilled driver is always drawn in blue. On the other 

hand, the gaze data of the learner is also drawn in blue, the same color as the gaze coordinate data of the skilled 

driver when the evaluation score is 1. The color is set as green when the score is 0.75, and yellow when the 

score is 0.5. When the score is 0, the color is set as red. The difference indicates the gap between them and 

therefore the learner should learn where and how s/he should look on with such colored circles as feedback. 

 

 



4. EXPERIMENTAL USE AND THE RESULTS 

4.1 Experimental Use  

The project conducted an experimental use of this system. The purpose of this experiment was to evaluate the 

effectiveness of the proposed method for supporting gaze learning and its implemented system. First, five 

people who drive at least once every two days tried the system as skilled drivers, and their gaze data were 

obtained through the system. Though we have to provide a model data for reference to subjects, there are 

several ways for this purpose. Among several options, the model data to be used in the experiment was 

determined by voting within the skilled drivers at this time. Then 15 men and women ranged in their 20s to 

50s whose driving frequency were less than once every two days joined voluntarily as learners and randomly 

divided into Group A, Group B, and Group C. Group A was the group that used the system (proposed system) 

in which both the learner's and the skilled person's gaze coordinates were displayed together in different colors 

according to the evaluation points, and Group B was the group that used the system that displays only the gaze 

coordinates of the proficient driver. Group C was the group that used the system that displayed only the gaze 

coordinates of the learner.  

 

 

Figure 3. Flow of the experiment 

Experiments on learners were conducted according to the flow shown in Figure 3. First of all, all the learners 

were asked to answer the questionnaire for the preliminary survey. The contents of the preliminary 

questionnaire asked about the mileage in the last year, accident history, violation history and so forth. Then, 

they watched the image of each group in drive simulator and we acquired gaze data. After that, the system gave 

feedback according to each group property. After the feedback, each group members watched the same video 

again and acquired the gaze data. The difference in cumulative evaluation scores between the groups was then 

investigated. In order to investigate changes in learners' behaviors, each group was given a questionnaire with 

a 4-point scale after the feedback given at each trial on how much they contributed to the learning of their 

viewpoints. 

Table 2 and Figure 3 show the mean difference between the pre- and post-feedback scores of weighted gaze 

agreement for each group of learners in the experiment, and the box plots with medians and quartiles, 

respectively. The higher scores indicate the improvement which is the influence of the system contribution. 

Figure 4 shows the results of a questionnaire in which participants rated on a 4-point scale the extent to which 

the feedback provided in each trial contributed to the learning of the learner's point of view after each feedback 

session. The results of the questionnaire after the feedback showed that about 67% of the responses was 

"Contributed" and about 27% was "Contributed a little" in group A. In group B, 20% of the responses was 



"contributed" and 67% was "contributed a little". As for the same question, in Group C, about 33% of the 

responses was "contributed" and about 53% was "contributed a little". It means that positive effects were found 

dominantly at Group A, Group B and Group C just in order. 

Table 2. Mean difference in gaze scores before and after feedback 

learners Group A learners Group B learners Group C 

A1 0.0787 B1 -0.0113 C1 0.0961 

A2 0.0471 B2 0.0106 C2 -0.0239 

A3 0.1312 B3 0.1869 C3 - 0.0445 

A4 0.1587 B4 0.1558 C4 0.0188 

A5 0.0625 B5 0.0047 C5 -0.0107 

average 0.0956 average 0.0693 average 0.0072 

 

 

Figure 4. Resulting graph in a box-plot format 

4.2 Discussion 

The results of the experiment showed that Group A had the highest improvement scores on the average though 

the highest improvement among all subjects appears in Group B (see Table 2). The median values in cumulative 

evaluation score were different between the groups, which was seen in Figure 4. The box plot also indicates 

that the degree of data distribution. Interesting discussion could arise between Group A of comparative middle 

variation and B of large variation. Our belief is that subjects with our system were influenced by a sound 

comparison including their own gaze tracking data to some extent while the improvements on subjects using 

model trajectory without their own gaze had diverse influence. In particular, one of subjects in group B 

indicated that the behavioral change had been worse through the feedback. In addition, improvements by two 

subjects, B2 and B5, were almost zero which means no actual improvements found while the other two 

indicated highly improved.  

Next, as the number of subjects were small but when we compare group A with group C, we can find large 

difference between them in several viewpoints. Therefore, we think the feedback through the gaze-detection 

with area-segmentation brings positive effects. 

 

 



If a way of driving operation conforms to the model, the learner gets good feedback but otherwise not. In 

addition, the results of the questionnaire requested after the feedback showed that Group A had the highest 

ratio about "contributed" with 67% of the learners. It means that they got positive impression from subjective 

viewpoint. 

5. CONCLUSION 

In this study, we designed a support environment that captures and analyzes the driver's gaze during driving 

using a driving simulator in order to make the driver aware of the areas s/he should pay attention to, and to 

provide visual feedback. The current proposal focuses just on the simple and solid style on detecting gaze and 

analysis thereof. In addition, we assume the technical proposal is based on the VR environment. However, we 

can apply it to the real driving with further improvement on machine learning techniqeus. 

Future issues to be addressed implied as follows. 

• The environment needs to draw on a larger screen because the current screen size used (12 inches) is 

small and the entire image can be seen, which is because of the limitation of the eye tracking device, 

including parts of the image that are not normally visible unless the driver gazes at them when driving. 

• We need to improve the accuracy of region segmentation by U-Net. The model data is created from the 

actual drive simulator videos for training U-Net but we should provide more precise one. 

• We have to consider the flexibility in viewpoint evaluation based on congruency. With the current system, 

grid area is congruent, and the U-Net area is incongruent, the agreement points are not uniformly set to a 

constant score of 0.75, but are variable based on the area ratio and other factors. 

• We can arrange the focus not only on viewpoint information, but also on auditory and other non-visual 

perceptions. 
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