
DEVELOPING AN ONTOLOGY OF MULTIPLE 

PROGRAMMING LANGUAGES FROM THE 

PERSPECTIVE OF COMPUTATIONAL THINKING 

EDUCATION 

Lalita Na Nongkhai1, Jingyun Wang2 and Takahiko Mendori1 
1Graduate School of Engineering, Kochi University of Technology, Japan 

2Department of Computer Science, Durham University, UK 

ABSTRACT 

This paper proposes the design of an ontology of multiple programming languages and give three examples to show the 
methodology. Our ontology aims to summarize the core of computational thinking logic by elaborating the concepts of 
three object-oriented programming languages in the industry: Python, Java, and C#. Therefore, the construction of the 
ontology lies not only on these three programming languages but also on their common concepts. This kind of ontology 
design facilitates the ontology extension and merging when concepts of other programming languages are added in the 

future. This ontology could be used to not only provide a guideline for any research work focusing on computational 
thinking education but also describe the common concept of visual programming tools and existing programming 
languages. Based on this ontology, an adaptive tutoring system intended to provide learners with personalized 
programming exercises, is under development.  

KEYWORDS 

Computational Thinking, Ontology, Programming Education 

1. INTRODUCTION 

Computational Thinking (CT) is a fundamental skill of a problem-solving approach in various skills such as 

English, Science, Mathematics, etc. (Jeannette, 2006). There are many approaches to teach computational 

thinking model. Learning with visual programming (VP) tools is suggested to be one of suitable method for 

children between 8 and 12 years old (or primary and secondary students) (Mercier et al, 2021). The existing 

VPs normally use gamification and animation elements to make the learning environment more engaging 

(Rose, Simon P. et al., 2017). Furthermore, in order to support CT skills learning, the basic programming 
concepts (such as variables, repetition, and conditional statements), to some extension, are abstracted by VP 

languages with the more advanced concepts (such as recursion, traversal, or indexing). However, few 

evidence supports that programming language can help those students learn CT skill easier. Also, those VP 

tools do not cover the same concepts. For example, Springin (2016) enables learners to make their drawing as 

a character and define the character ability, and relations, etc., by tapping the icons. VISCUIT (Watanabe  

et al., 2018), defines a glasses-shape item; after adding drawings in both glasses, users can create sequences 

and conditions to activate image in left turning to the one in right. Both of those two tools focus on a 

sequential logic in order to support learners easily understand conditional and repetition. Another popular 
type is the block-based VP tool, such as Scratch (Maloney et al., 2010), Blocky (Fraser et al., 2012) and 

MOONBlock (Mukai and mLAB, 2016), which enable learners to make programs by blocking-code. Some 

of them (such as Blocky) have a feature to convert from blocking-code to programming languages 

(Javascript, Python, etc). This feature not only supports learners to compare VP with PL, but also makes 

those tools involve more programming concepts (variables, conditions, repetitions, function) than other types 

of VP tools. 

 



In higher education, explaining problem solving examples while teaching a specific programming 

language (PL) is another methodology for computational thinking logic education. Obviously, a PL covers 
more content than any existing VP and its education is more complicated. The trend of PL has changed 

quickly, as new VP tools are continually developing. This makes it more difficult for teachers to find a 

suitable teaching strategy. Because VP and PL have many programming concepts and not all concepts are 

included in every VP tool or PL. To address this issue, the summary of the common concept of any 

programming course, whatever it is VP, or any existing PL, can help any programming teacher find a strategy 

to design material or exercise. Also, it can help researchers/developers to design new programs or expand 

existing e-learning platforms or tools to support CT education. 

Ontology can be used to represent any domain knowledge concept and relationship in any interested 
fields. In the education field, the e-learning systems adopting ontology as a semantic network to enhance 

their functions have been proven with the ability to support learners and instructors to search the information 

quickly and accurately (Wang, J. et al, 2014; Wang, J. et al, 2020). The object properties of ontology can be 

used to describe the relationship between knowledge concepts and its data properties can be used to elaborate 

information and examples of knowledge concepts. Furthermore, these ontologies can be easily reused in 

other research or systems. 

In this work, we propose a COmputatioNal ThinkIng oNtology mUltiple prOgramming langUageS 

(CONTINUOUS, can be accessed by https://github.com/lalita-nk/CONTINUOUS.git) to describe common 
concepts of any programming course (no matter VP or PL). Our research questions are: can CONTINUOUS 

benefit (1) novice learners in understanding and determining their learning orders, (2) programming lectures 

in making teaching plan and preparing materials/exercises, and (3) the researcher working on the designs new 

VP/PL or the development of the existing VP/PL? For the education of programming languages, most of the 

previous systems incorporate only one ontology of an existing programming language. The ontology 

designed in our research involves the domain knowledge of three programming languages: Python, Java, and 

C# (C sharp), which are the most popular programming languages for beginner learners. CONTINUOUS is 

intended be the foundation of any intelligent tutoring systems which need to record the metadata of 
programming knowledge. 

2. LITERATURE REVIEW 

Most previous ontologies implemented in programming language fields focus on the procedural 
programming language C or object-oriented programming language Java. Sosnovsky and Gavrilova (2006) 

proposed a step-designing approach to create an educational ontology for C programming to explain 

knowledge concepts and their relationship in C. The top-level class of this ontology is “C programming”, 

following with the second-level classes “SYNTAX”, “PROGRAMMING TECHNIQUES”, and 

“PLATFORMS”. They claimed that this ontology shows the important concept of C programming from the 

researchers’ vision. However, their ontology only includes “has part” relation to show the hierarchical 

structure. Ming-Che Lee et al. (2005) proposed the ontology of a Java programming language, one of the 

object-oriented programming languages. The objective of this research is to guide instructors to design 
learning strategies for teaching. The relationship between concepts can help instructors to build more suitable 

material. This research also proposed a methodology to build this ontology so that any researchers interested 

in the Java programming language can refer to this ontology in their research. 

Pierrakeas et al. (2012) proposed to organize Learning Object (LOs) based on two ontologies of two 

programming languages: C and Java. Their ontologies included the basic concept of two languages as 

metadata of the corresponding Learning Objects (LO) to help instructors make clearly the domain concepts. 

The instructors can follow the information in the ontology for the creation of learning material and teaching 

strategies. However, their ontology only describes the content of C and Java separately, no common content 
is summarized. 

Our research proposed and implemented an ontology (called "CONTINUOUS") which combines the 

concepts of three programming languages. We designed a top-level class “common concepts” which 

summarizes the basic concepts shared by all the three programming languages and designed the concepts in 

each language in a separate class. "CONTINUOUS" may benefit instructors, learners, and others to apply this 

basic programming language concept in their work or research. 



3. THE DESIGN OF A COMPUTATIONAL THINKING ONTOLOGY 

BASED ON MULTIPLE PROGRAMMING LANGUAGES 

(CONTINUOUS) 

3.1 The Design of Top-level & Second-level Classes 

The construction of the programming language ontology in this research covering the concepts of Python, 
Java, and C#, is consistent with the knowledge emerging in our Question Bank (include 20 basic concepts) 

(Na Nongkhai et al., 2021), which are design based on opinion of instructors who have several years of 

programming teaching experience, and existing programming tutorials. CONTINUOUS was built by Protégé 

(Musen and Protégé Team, 2015), a popular and open-source ontology editor. 

According to CONTINUOUS design which includes more than one programming language. The  

top-level concepts consist of 4 classes: common concepts, C sharp, Java, and Python, as shown in Figure 1. 

For the top-level, our design first focuses on the “common concepts” which covers all basic concepts of the 

three programming languages such as built-in function, data structure, conditionals (if, if-else, etc.), 
repetition (for-loop, etc.), method, etc. CONTINUOUS defines the basic programming concepts as a “class” 

(Top-level and Second-level as shown in Figure 1) and the syntax of a specific programming language is 

located on the leaf as an “instance”.  

 

 

Figure 1. An example of instance in class “conditionals” 

For example, “if_C/Java” is designed as one instance of “conditionals” because the “if statement” has the 

same programming syntax in both C# and Java while “if_Python” as another instance due to its different 

syntax. On the other hand, “if_C/Java” is also an instance of the second-level concept “Java_statements” and 

“C_sharp_statements” while “if_Python” is also an instance of “Python_statements”.  We also designed a 

relation named “extend from” between “if…else_C/Java” and “if_C/Java” (○1  in Figure 1) because “if-else 

statement” is the syntax that extends from the “if statement”, this relation (○2  in Figure 1) also exists between 



“if_Python” and “if…else_Python” for the same reason. In summary, the design of the instances and their 

relations is based on the similarity and the difference of syntax of the three programming languages. 
Therefore, as shown in Figure 2, the object property of “if…else_C/Java” in CONTINUOUS includes 

“extend from” connecting to “if_C/Java”, which corresponds to ○1  in Figure 1. And the data property is 

designed to include “definition” (○3  in Figure 2), “example” (○2  in Figure 2, which shows a code snippet), 

and “grammar specification” (○1  in Figure.2, which describes the syntax) to explain the usage of “if-else 

statement”. 
 

 

Figure 2. An example of all properties in “if…else_C/Java” 

 



 

Figure 3. An example of “common concepts” and “Python” 

3.2 The Design of “Data_Structure” in “Common_Concepts” 

Another design focus of “common_concepts” is on “data_structure”, which are the most essential in any PL 

(Wegner, 1971) but rarely appears in VP. As shown in Figure 3, there are 5 common Data structures: 

Dictionary, Set, Map, List and Array. Some of the structures (such as “List”) are shared by the three 

languages, but some (such as “Dictionary”) only appear in two of the languages: Python and C#. 
“Dictionary” is a data structure that shared by C# and Python, but its grammar in Python is different from the 

grammar in C#. Therefore, to describe the specific usage in Python, the “Dictionary_Python” is designed as 

an instance of the second-level concept “Python_data_structures” which is the subclass of the top-level 

concept “Python”. 

3.3 Abstract Concepts in “Common_Concepts” 

The instances in CONTINUOUS could be either programming statements or abstract concepts. For example, 

“methods” as one of the “common_concepts”, is designed to include abstract concepts of the functionality of 

each specific method (such as “add_an_element”), and “list_methods” consists of the methods in List (an 

abstract data type) We design “has_an_instance” (which has a reverse relation called “is_an_instance_of”) to 

link the abstract concept (such as “sort_the_elements”) to its corresponding method in each specific 

programming language (such as “sort()_Python”, an instance of “Python_built-in_function”). These abstract 
concepts provide the summary of the common concepts needed in computational thinking logic while each 

programming language has their own syntax. This kind of design not only provide the perspective from one 

specific programming language but also from general similarity of all programming languages. 

 



 

Figure 4. An example of direct instinct and object property of “sort_the_elements” 

4. CONCLUSION AND FUTURE WORK 

This paper describes some examples of CONTINUOUS to show how we identify the core concept of CT 
education by merging the concepts of existing programming languages. We intend to support CT education 

no matter what kind of programming language is used as a tool for the implementation. The common 

concepts designed in CONTINUOUS may benefits novice learners in determining learning orders, instructors 

in making strategies of pedagogies, and researchers in expanding CONTINUOUS or applying 

CONTINUOUS as metadata in any intelligent tutoring systems.  

In the future, CONTINUOUS can be easily extended to include more programming language by simply 

adding more top-level concepts named with the names of programming languages and modifying the content 

inside the “common concepts”. In other words, the feasibility and reusability of ontology facilitate the 
expansion of its contents. Based on CONTINUOUS, we are implementing a system (Na Nongkhai et al., 

2021) to help instructors to design exercises that can be used to provide personalized support for learners. 

This system will allow instructors to add exercises based on the knowledge defined in CONTINUOUS and 

enable learners to check their personal progress with visualization support. 

REFERENCES 

Fraser, N. et al, 2012. Blockly. Google Developers. Retrieved from https://developers.google.com/blockly 

Jeannette M. Wing. 2006. Computational thinking. Communication of the ACM. ACM 49, 3 (March 2006), 33–35. 

Maloney, J. et al, 2010. The scratch programming language and environment. ACM Transactions on Computing 
Education (TOCE), Vol. 10 No. 4, pp. 1-15. 



Mercier, C. et al, 2021. Formalizing Problem Solving in Computational Thinking: An Ontology approach. 2021 IEEE 
International Conference on Development and Learning (ICDL). Beijing, China, pp. 1-8. 

Ming-Che Lee et al, 2005. Java learning object ontology. Fifth IEEE International Conference on Advanced Learning 
Technologies (ICALT'05). Kaohsiung, Taiwan, pp. 538-542. 

Mukai, N. and mLAB, 2016. Game programming with MOONBlock.Retrieved from  
https://mukai-lab.info/pages/tech/enchant_js/moonblock/ 

Musen, M. A., and Protégé Team, 2015. The Protégé Project: A Look Back and a Look Forward. AI matters, Vol. 1,  
No. 4, pp. 4–12. 

Na Nongkhai, L. et al, 2021. A Framework of Exercise Recommendation for Novice Learners in Computer 
Programming. ICCE 2021: The 29th International Conference on Computers in Education Online. pp. 746-749. 

Pierrakeas, C. et al, 2012. An Ontology-Based Approach in Learning Programming Languages. 16th Panhellenic 
Conference on Informatics. Piraeus, Greece, pp. 393-398. 

Rose, Simon P. et al, 2017. An exploration of the role of visual programming tools in the development of young 
children’s computational thinking. Electronic Journal of e-Learning, Vol. 15, pp. 297-309. 

Sosnovsky, S.A., and Gavrilova, T., 2006. Development Of Educational Ontology for  
C-Programming. International Journal “Information Theories & Applications”, Vol. 13, No. 4, pp. 303-307. 

Springin, 2016. Springin’ – Creative Programming Tool. Retrieved from https://www.springin.org/en/ 

Wang, J. et al, 2014. A language learning support system using course-centered ontology and its evaluation. Computers 
& Education, Vol. 78, pp. 278-293. 

Wang, J. et al, 2020. Development and evaluation of a visualization system to support meaningful e-book learning. 
Interactive Learning Environments, pp. 1-18. 

Watanabe, T. et al, 2018. Programming Lessons for Kindergarten Children in Japan. Constructionism2018. Vilnius, 
Lithuania, pp. 741-744. 

Wegner, P., 1971. Data structure models for programming languages. ACM SIGPLAN Notices, Vol. 6 No. 2, pp. 1-54. 

 

 

 


